Radio Loud AGN Unification: Connecting Jets and Accretion

Eileen Meyer
Space Telescope Science Institute

Giovanni Fossati, Rice University
Markos Georganopoulos, UMBC
Matthew Lister, Purdue University

Invited Talk
The Innermost Regions of Relativistic Jets and Their Magnetic Fields
Granada, Spain
June 2013
Zeroth Order: Orientation-based Unification:

Radio Galaxy

- **FR I:** brightest at the center, "plumey jets"
- **FR II:** brightest in the lobes, collimated jets

Blazars

Direct view of the jet!
Radio Loud AGN Unification
(beyond orientation)

Radio Galaxy Morphology

FR I
Low power, weak lines)

FR II
High power, high excitation spectra

Blazar Spectral Type

FSRQ

BL Lac

ADAF

Thin disk

(Many notable exceptions!)
Introduction

The Blazar View of the Relativistic Jet

- Inverse Compton (source of upscattered photons not well understood)
- Synchrotron emission
- Isotropic Radio Emission from Slowed Plasma in the Lobes
- Peak frequency, wide range
The Blazar Sequence

- Jet Power Increases
- ν_{peak} decreases
- L_{peak}/L_R Increases
- IC dominance increases
- BLLs to FSRQ spectral change

[adapted from Fossati et al 1998]
Sources here were found (Nieppola 2006, Landt 2006, Caccianiga 2004)

BL Lacs: Jet Power uncorrelated with ν_p
RL AGN Unification - Problems

- How does a continuous blazar sequence fit in with a dichotomy in spectral type/morphology?
- What is going on with the blazar sequence?
- Other oddities: BL Lac has broad lines?
- Kharb et al., 2009 found BL Lacs with hotspots in VLBI monitoring
- Many low-power FSRQ blazars have been found
- Evolution Measures suggest high-synchrotron peaking sources are “negatively evolved” vs. low-peaking
- Spectral type in Radio Galaxies found to be rather mixed: low-excitation FR IIs, high-excitation FR Is
Hypothesis: The Blazar Sequence

Jet Power Increases (blue → red)
Along 0° path (gray): L_p increases, ν_p decreases

Departing from the sequence, sources drop in Luminosity and frequency as θ increases

Need to measure: Orientation (θ)
Intrinsic Jet Power
(good L_p, ν_p)
Is there a monoparametric Sequence?

1. Measure (unbeamed) Jet Power
2. Measure the alignment – how does angle of observations affect what we see?
 - Hint: Jet structure may become more apparent at large θ
3. Build Up a large Sample – better SED sampling
Part I: The Blazar Envelope

Methods

Jet Power: Lobe Emission “sticks up”

Orientation: Radio Core Dominance

Cavity Power ($P*ΔV$/time)

Extended, Low-frequency Power

Cavagnolo, et al. 2010

Core is faint in the radio (not beamed)
“Simple jet” (single)

“Decelerating Flow” model
(Georganopoulos et al 2005)
New Hypothesis: A Strong/Weak Dichotomy?

- **Strong Jets:**
 - All High $L_{\text{kin}} (> 10^{44.5} \text{ erg s}^{-1})$, some lower L_{kin}
 - (Nearly) All FSRQ, many BL Lacs
 - Low $\nu_p (< 10^{15} \text{ Hz})$
 - Associated with FR IIs (based on L_{kin})

- **Weak Jets:**
 - Only at low $L_{\text{kin}} (< 10^{44.5} \text{ erg s}^{-1})$
 - (Nearly) All BL Lacs
 - All high $\nu_p (> 10^{15} \text{ Hz})$, some low ν_p?
 - Associated with FR Is (based on L_{kin})
New Hypothesis: A Strong/Weak Dichotomy?

Next Questions:

1) Is the divide real?
2) Linked to Accretion Mode? Spectral Type mixed?
3) Jet Power? (not clean divide)
4) Sequence 'broken'?
Some Questions Answered

- Low \(\nu_p \), low \(L_p \) sources?
 \(\rightarrow \) These appear to be misaligned.

- \(L_{kin} (L_{ext}) \) does not vary with \(\nu_p \) for BL Lacs?
 \(\rightarrow \) Consistent with our findings: Horizontal movement due to velocity gradients in jet

- Sources at low \(\nu_p \) have range of \(L_{kin} \)?
 \(\rightarrow \) Consistent with our findings: All 'misalignment paths' meet at low \(\nu_p \)
Part II: Accretion Mode and the Broken Power Sequence

Accretion Modes – driving the FR I/FR II divide?

\[\frac{\dot{M}}{\dot{M}_{\text{Edd}}} = \dot{m} \sim 0.01 \]

Ghisellini et al. 2001
Part II: Accretion and the Broken Sequence

$L_{\text{kin}}, \theta, \ldots \dot{m}$?

(Mass estimates from reverberation mapping, velocity dispersions, mass-luminosity scalings)

Weak Jets = Inefficient
Strong Jets = Efficient
What is the role of Jet Power?

A Broken Power Sequence?
The Weak-Jet Sequence

Histogram of box (α)

Histogram of box (β)

Histogram of box (γ)

Log Jet Kinetic Power [ergs s⁻¹]
The Strong-Jet Sequence

Histogram of box (C)

Histogram of box (B)

Histogram of box (A)
IMPOSTER BL Lacs in the Strong Branch

![Graph showing log L_{peak} (ergs s^{-1}) vs log ν_{peak} (Hz) with different categories and symbols representing BL Lac, FSRQ, FR I, FR II, and Fermi RG.]
BL Lac fraction in the strong branch: increases with **beaming** and as peak shifts into optical

\[
\frac{\Delta \text{frequency}}{\Delta \text{Luminosity}} = \frac{\nu_{\text{peak}}}{\nu_0}
\]
Summary:
The Broken Power Sequence

Let's follow $10^9 m_{\text{sol}}$ SMBH at 0° ($\log L_{\text{edd}} \sim 47$)

- $\log L_{\text{kin}}=46$
 - $m'= 1 \times 10^{-1}$
- $\log L_{\text{kin}}=45$
 - $m'= 1 \times 10^{-2}$
- $\log L_{\text{kin}}=44.5$
 - $m'= 1 \times 10^{-2.5}$
- $\log L_{\text{kin}}=43$
 - $m'= 1 \times 10^{-4}$
Conclusions/Key Observations

+ Suggestion of Two populations: “weak” and “strong” with very different jet profiles, different spectral properties

+ Weak jet branch maxes out at $10^{45.5}$ erg/s in jet power – exactly what you expect if there is an accretion mode switch at 10^{-2}, given maximum observed black hole size of $\sim 10^9 \, M_\odot$

+ There are IMPOSTER BL Lacs out there

+ The sequence may exist in 'broken' form:
What can we learn from Fermi?

Very similar to the synchrotron envelope.

FR II below FSRQ (red)

FR I below and to the left of BLs (blue).

* are the Padovani 2012 sources claimed to be high peak frequency BL Lacs.
What can we learn from Fermi?
Are the Γ-rays of powerful quasars of SSC or EC nature?

SSC – upscatters synchrotron photons

- beaming pattern is the same as the synchrotron one

For sources of the same jet power the Compton dominance (IC over synchrotron power) is not a function of the core to extended ratio

EC – upscatter photons from outside the jet (BLR or molecular torus)

- beaming pattern is different:

 $L \sim \delta^4$ synchrotron peak

 $L \sim \delta^6$ IC peak

 (For radio, $L_{\text{core}}/L_{\text{ext}} \sim L \sim \delta^{3+\alpha}$, $\alpha \sim 0.2$)

For sources of the same jet power the Compton dominance (IC over synchrotron power) should increase with increasing core to extended ratio
The Compton dominance of the most powerful sources increases with increasing Core to extended ratio. At least for the most powerful quasars the γ-ray emission mechanism seems to be external Compton scattering.
Check: We expect the superluminal speeds exhibited by these sources to peak at intermediate alignments, which corresponds to intermediate Compton dominances.
Conclusions

The collective properties of radio loud AGN suggest the following picture:

1. There is a critical mass accretion rate, $\dot{m} = \frac{\dot{M}}{M_{\text{Edd}}} = \dot{m}_{\text{crit}} \sim 0.01$, below which, the accretion is a radiatively inefficient with weak or no broad line region and molecular torus.

 Above this, the accretion is a radiatively efficient thin disk with a broad line region and molecular torus (Narayan et al. 97, Ghisellini et al. 09)

2. All jets of a given kinetic power and the same accretion environment are physically similar and their observed properties depend on their orientation.

3. Weak jets (radiatively inefficient accretors) are characterized by decelerating flows in their sub-pc scale jets.
Relevant Papers:

Meyer et al. 2011: *From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy*

Meyer et al. 2012: *Collective Evidence for Inverse Compton Emission from External Photons in High-power Blazars*
Clear break between RG, blazars

“striping” - indicates that L_{kin} and L_{0} are linked