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Active Galactic Nuclei 

B and N decrease with distance to the jet origin. Hence, frequency-
dependent position of the  =1 surface (VLBI core). 

Kovalev et al. (2008) 



Core shifts with VLBI 
THE SUBTLE PROBLEM OF PHASE REFERENCING 

In a phase-referencing experiment at two frequencies, it is impossible to 
decouple the core shift in the calibrator from the core shift in the target. 
 
THERE ARE ONLY TWO EXCEPTIONS: 
 
1.- Sources that have shifts (i.e., jets) in perpendicular directions (and 
are located close by). Any tangential shift in one source would map into 
a wrong estimate of the shift in the other source. 
 
2.- One of the sources (or prominent source component) is optically thin 
(i.e., there is no core-shift).  

Optically-thin sources are the Desideratum of VLBI astrometry! 



The LLAGN in M81 
- Distance: 3.63 + 0.34 Mpc (Freeman 
et al. 1994); 3.96 + 0.29 Mpc  (Bartel 
et al. 2013) 
 
- Radio luminosity ~ 1037 erg/s (e.g., 
Ho et al. 1999).   
 
- Spectral index +0.3 up to ~200GHz 
(Reuter & Lesch 1996). 
 
- X-ray luminosity ~ 1040 erg/s (e.g., 
Reynolds et al. 2009).  
 
- Estimated mass of SMBH: ~7x107 
Solar masses (e.g., Deveraux et al. 
2003). 
 
- Rsch = 1-3 x 10-5 pc 
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M81 and  
SN1993J 

-  SN1993J was an 
extremely strong 
radio-loud 
supernova, located 
in M81 (host of a 
LLAGN). 

-  Angular Distance 
between M81* and 
SN93J: 2.8 arcmin 



M81 and SN1993J 
- SN1993J was an extremely strong radio-loud supernova, located in 
M81 (host of a LLAGN). It shows a high degree of isotropy of the 
radio shell’s expansion. 
 
- There is no core-shift in the radio emission of a supernova. Hence, 
this was a unique opportunity to monitor the (absolute) kinematics of 
the jet of an AGN. 
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M81. Multi-frequency astrometry 

Fit 



M81. Multi-frequency astrometry 
COMPARISON 1-2 

- Very similar results for the core-shift with both methods (although 
large uncertainties). 

- Smooth & compact jet; 
equipartition: 

(Lobanov 1998) 



M81. Model fitting 
- Elliptical Gaussian to fit the 
 (slightly resolved) core. 
 
- Circular Gaussian to fit the  
extended close-by jet emission. 
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Martí-Vidal et al. A&A 533, A111 (2011) 
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M81. VLBI results 
EVOLVING CORE INCLINATION AND LUMINOSITY 



Position of 
the 
brightness 
peak 



Time 
evolution  
of P.A. 



Core Flux Density 
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EVOLVING CORE INCLINATION AND LUMINOSITY 



PRECESSION?? 

M81. VLBI results 
EVOLVING CORE INCLINATION AND LUMINOSITY 



M81. JET PHYSICAL CONDITIONS 

-Knowing the distance (3.63 Mpc), we derive the linear core-shift: 

-Knowing the galaxy inclination (~14 deg.), the AGN flux density, and the  
jet opening angle,  we derive the (equipartition) magnetic field at the core : 

7, 10, 21, and 34 mG (1.7, 2.3, 5.0, 8.4 GHz) 

-Extrapolating these magnetic fields to 1pc: 

… and assuming a magnetized black hole (critical B), we derive its mass: 

 M = 2 x 107 solar masses 

(see eqs. in, e.g., Lobanov 1998) 



 .  
-The magnetic fields is of the order of 10-50 mG.  
 
   However, 10s of Gauss are necessary to model the inverted spectrum, 
provided  it is optically thick (Reuter & Lesch 1996). Much lower B can be 
fitted if the emission  Is optically-thin (i.e., mono-energetic electron 
distribution), but this model is not consistent with the core-shift scenario. 

- A mass of 2 x 107 solar masses is in good agreement with that 
derived from the kinematics of the central disc of gas (7 x 107 solar 
masses, Devereux et al. 2003) and that derived from the stellar velocity 
dispersion at the bulge (5.5 x 107 solar masses, Schorr-Muller et al. 
2011).  
 
Morever, our mass estimate should be considered, indeed, as a lower 
limit, obtained  by imposing a critical magnetic field  to the SMBH 
neighborhood. 

M81. JET PHYSICAL CONDITIONS 



M81. Jet Precession (i) 
 We have shown there is evidence of Jet Precession  The 
observed range of changes in PA and flux density variability can be 
explained with γ=10-20 and  deprojected variations of  2-4 deg in the 
θLOS (between 12 and 16 degrees). 

Martí-Vidal et al. A&A 533, A111 (2011) 



M81. Jet Precession (ii) 

The fitted period of 7.3±0.1 yrs cannot be properly established (it is 
comparable to the dataset). In any case, it is very short compared 
with typical precession timescales. 

Martí-Vidal et al. A&A 533, A111 (2011) 



M81. Jet Precession (iii) 

 We have extra 
VLBI observations, 
phase-referenced 
to supernova 
SN2008iz in M82. 
Monitoring is 
ongoing at several 
frequencies. 



MOJAVE 
 Jets 

 displaying  
oscillatory 

trends 

Lister et 
al. (2103), 
submitted 
to AJ 

“We favor a conical jet model in which emerging features do not fill the 
entire cross-section of the flow. […] What is typically visible are lit up 
portions of thin-ribbon like structures embedded within a broader 
conical outflow. […] According to Perucho (2012) these ribbon 
structures may arise from helical Kelvin-Helmholtz pressure maxima 
within the jet.” (Lister et al. 2013) 



Conclusions 
-We have analyzed a complete set (12 years; multifrequency) of 
VLBI observations of M81*, phase-referenced to SN1993J 
 
- We find a clear and long (~3-4 years) flare in the radio emission of 
M81 that seems to be directly related to changes in the source 
geometry (hence independent of the disc-jet connexion). 
 
- The flare happens to occur on a time range where the position 
angle of the cores at all frequencies (referred to a fiducial point on 
the sky) increase systematically.  

- - The position angle of the Gaussian fitted to the core evolves in a 
sinusoidal way (period of 7.3 years) plus a long-term component. 

- - We have obtained  estimates of the mass (based on a strongly 
magnetized BH scenario)  and  the magnetic field (based on  the 
derived (linear) core-shift and jet opening angle). 

 




