Probing the Radio Counterpart of Gamma-ray Flaring Region in 3C 84

Hiroshi Nagai (National Astronomical Observatory of Japan)

In collaboration with

Monica Orienti, Motoki Kino, Kenta Suzuki, Keiichi Asada, Akihiro Doi, Gabriele Giovannini, Marcello Giroletti, Jun Kataoka, Filippo D'Ammando, Takafumi Haga, Makoto Inoue, Anne Lahteenmaki, Merja Tornikoski, Jonathan Leon-Tavares, Seiji Kameno, Uwe Bach

Gamma-ray bright RGs

- More than 10 RGs have been detected in GeV band by *Fermi*-LAT
- 3C84/NGC1275, M87, Cen A are also detected in VHE gamma-ray band
- The study of gammaray emission mechanism in RGs is important in the context of unification for the radio-loud AGN

Object	1FGL Name	R.A. (J2000)	Decl. (J2000)	Redshift	Class		log (CD)	Ref.	Cat.
					Radio	Optical	at 5 (GHz)		
3C 78/NGC 1218	1FGLJ0308.3+0403	03 08 26.2	+04 06 39	0.029	FRI	G	-0.45	1	3CR
3C 84/NGC 1275	1FGLJ0319.7+4130	03 19 48.1	+41 30 42	0.018	FRI	G	-0.19	2 ^a	3CR
3C 111	1FGLJ0419.0+3811	04 18 21.3	+38 01 36	0.049	FRII	BLRG	-0.3	3	3CRR
3C 120		04 33 11.1	+05 21 16	0.033	FRI	BLRG	-0.15	1	3CR
PKS 0625-354	1FGLJ0627.3-3530	06 27 06.7	-35 29 15	0.055	FRI ^b	G	-0.42	1	MS4
3C 207	1FGLJ0840.8+1310	08 40 47.6	+13 12 24	0.681	FRII	SSRQ	-0.35	2	3CRR
PKS 0943-76	1FGLJ0940.2-7605	09 43 23.9	- 76 20 11	0.27	FRII	G	<-0.56	4	MS4
M87/3C 274	1FGLJ1230.8+1223	12 30 49.4	+12 23 28	0.004	FRI	G	-1.32	2	3CRR
Cen A	1FGLJ1325.6-4300	13 25 27.6	- 43 01 09	0.0009 ^c	FRI	G	-0.95	1	MS4
NGC 6251	1FGLJ1635.4+8228	16 32 32.0	+82 32 16	0.024	FRI	G	-0.47	2	3CRR
3C 380	1FGLJ1829.8+4845	18 29 31.8	+48 44 46	0.692	FRII/CSS	SSRQ	-0.02	2	3CRR

Abdo+ 2010

VLBI movie

2-years light curve

Structural change

VERA 43GHz images

Nagai et al. 2012

Apparent motion

- v_{app}=0.1-0.47c
- Slower than the jet speed predicted from gammaray emission by Abdo+ 2009

Summary, so far...

- No clear correlation between radio and gammaray light curves
 - Monotonic increase in radio flux density
 - Gamma-ray flare on the timescale of days-weeks
- No significant change in VLBI-scale structure before and after the gamma-ray flares
- Apparent motion is relatively slower than the ones predicted from one-zone SSC and deceleration jet model

- Data as of 2013 Jan (PI: T. Haga)
- Clear limb-brightening as expected from the spine-sheath scenario (Ghisellini+ 2005)
 - Velocity gradient across the jet?

Ghisellini+ 2005

国立天文台

Constraint on v_{jet} and θ_{jet}

- If the limb-brightening results from the velocity gradient across the jet, $\theta_{jet} > \theta_{beaming} = \sin^{-1}(1/\Gamma_{spine})$
- Γ_{spine}>5.8

Jet width profile

Power-law index is flatter than that of M87

– α =0.58-1.04 (Asada & Nakamura 2012)

• Due to different circumnuclear environment ??

Conclusion

- No clear correlation between radio and gammaray light curves
- VLBI-measured apparent speed is relatively slower than the one expected from the SED modeling
 - Gamma-ray emission is more beamed than the Lorentz factor as indicated by the VLBI motion?
- Clear Limb-brightening as expected from the spine-sheath model

Are we seeing slower sheath of jet at radio wavelengths?

- 43GHz data lies below the low energy cutoff ($\alpha^{-1/3}$)
- Observed spectral index of C3 disagree with $\alpha = 1/3$

- What is the bridging structure between C1 and C3?
- Equipartition magnetic field of C3 is ~0.3G.
- t_{syn}~1.5 yr (at 43GHz)
 - Bridging structure is probably not a "remnant" of C3
- Subsequent jet ejection from C1

