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Outline of talk —
» Image alignmnent/core shifts/core B fields
» Faraday rotation studies

» Investigations of image properties using
Monte Carlo simulations
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Why 1mage alignment 1s necessary
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Schematic
from Kovalev
et al. (2007)

VLBI “core” = optically thick base of jet, moves further
down jet at increasingly lower frequencies
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VLBI images align on bright, compact cores rather than
optically thin jet features, absolute position info lost,
direct superposition yields erroneous spectral indices.
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This 1s actual correct physical alignment!



Alignment techniques

o Based on comparing positions of optically thin features
» Model fitting

» Image cross-correlation analyses

o In practice — different approaches work best for different
source structures, but both can yield reliable alignments



Lobanov (1998):

o Approach to estimating pc-scale B field strengths
based on measurement of frequency-dependent position
of VLBI core (Konigl 1981)

o Few sources, few frequencies, but a start

More recent studies:

O’Sullivan & Gabuzda (2010) — only a few sources, but 8
frequencies (detailed, redundant information)

Kovalev et al. (2009) — 29 sources, 2 frequencies
Sokolovski et al. (2011) — 20 sources, 9 frequencies

Pushkarev et al. (2012) — more than a hundred well
studied (MOJAVE) sources, four frequencies



O’Sullivan & Gabuzda 2010 2007+777
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e Behaviour expected for Blandford—Konigl jet 1s observed

e Evidence for equipartition in most cores — values for
parameter k. often close to 1, suggests B~r ! and N ~r 2



O’Sullivan & Gabuzda 2010
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e Inferred core-region B fields are tenths of Gauss

e Data consistent with B ~r !

e Extrapolation of B field to smaller scales gives values
consistent with magnetic launching of jets (points shown

are for r,and 10r,; Komissarov et al. 2007)



Pushkarev et al. (2012)

o Ability to compare shifts for
different types of AGN:ss.

o Shift distribution peaked 1n jet
direction, as expected
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Pushkarev et al. (2012)

o B fields 1n quasars
somewhat higher than

in BL Lac objects

Quasars 1
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Faraday Rotation: Studies of
Ambient Medium & Jet B Fields



Faraday rotation — rotation of the observed linear

polarisation angle {¥j when polarised EM wave
passes through a magnetised plasma.

e

Line of sight B field

Electron density



Zavala & Taylor (2003, 2004)
0 40 objects
0 Core RM > Jet RM

o Sometimes sign changes (changes in LOS B field)

0 Quasar core RMs > BL Lac core RMs




If jet has a helical B field, should observe a Faraday-rotation
gradient across the jet — due to systematically changing /ine-
of-sight component of B field across the jet (Blandford 1993).
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Croke, O’Sullivan & Gabuzda 2010

Gabuzda et al.
2013

Hovatta et al. 2012

Reports of transverse RM gradients across pc-scale AGN
jets, suggested as evidence for helical B fields



Is the field toroidal or helical on parsec scales?

Murphy et al. (2013)

Fitting asymmetric transverse pol profiles for Mrk501 using
simple helical field model — yields consistent fits with pitch
angle ~ 53°, viewing angle in jet rest frame ~ 83°
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(see Coughlan poster, #21)

Note: Mrk501 also has RM grad
(Gabuzda et al. 2004, Croke et al.
2010)
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Coughlan poster (#21) — another example

8+ 1633+382 (MEM)
Convolved with 1/3 CLEAN beam
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Asymmetric transverse
pol structure revealed by
high-res MEM pol map
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===> Helical (not just toroidal) field present on pc scales



Murphy et al. (2013)

Fitted value for viewing angle in jet rest frame
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Mahmud et al. (2012)

Reversals of the transverse RM gradient between core region
and jet on parsec scales in two AGNs
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4.6,5,7.9,84,129,154 GHz 1.35,1.43,1.49, 1,67 GHz



Can be explained 1f “outgoing” B field in jet/inner
accretion disc closes 1n outer disc

Winding up of field /
lines due to

Integration path
passes through both

Provides direct evidence for the presence of a “return
field” 1n a more extended region surrounding the jet



Christodoulou et al. (in prep), Gabuzda et al. (2012) —
finding some transverse RM gradients on kpc scales
in literature

Fewer kpc-scale than pc-
scale jets show transverse
RM gradients — may reflect
different relative
contributions from
systematic (helical/toroidal)
and random (turbulent) RM
components on different
scales

(also talk by J. C. Algaba)

Bonafede et al. 2010



Monte Carlo simulati



e Transverse RM gradient visible
in theoretical simulations of AM (rad m

Broderick & McKinney (2010), :
even with a 1-mas beam
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e Spurious non-monotonicity
possible 1n core region for some
viewing angles, but observed
direction of RM gradient is usually
correct
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e Suggests we should be able to
observe this effect



proposed 4 criteria for transverse
RM gradients to be reliable:

. At least three resolution elements across the jet.

. A change in the RM by at least three times the
typical error.

3. An optically thin synchrotron spectrum at the lo-
cation of the gradient.

. A monotonically smooth (within the errors) change
in the RM from side to side.

e Criteria 2, 3, 4 have been applied in most previous studies
anyway, do not add anything new

 Criterion 1 was presented without justification, but would
reject nearly all reported RM-gradient detections



o MC simulations to investigate statistical occurrence of
spurious RM gradients due to noise and limited baseline
coverage for 7.9, 8.4, 12.9, 15.4 GHz VLBA data

o Fewer than ~1% of runs
gave spurious 3{¥
gradients, even for
observed jet widths ~1.5
beam widths
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o Few spurious 2{¥
gradients, too, but number

. can exceed 5% for widths
jet widin (beams) below ~ 2 beam widths
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Results confirmed by

1.36, 1.43, 1.49, 1.67 GHz

MC Results for Spurious RM Gradients for 2202+420

12, 15, 22 GHz
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Observed Jet Width (in beamwidths)

Behaviour very similar, details depend on frequency range
considered. In all cases, show that the “3 beamwidth™
criterion of Taylor & Zavala (2010) 1s too severe.



4.6,5,7.9,8.4,12.9,15.4 GHz

o Monte Carlo studies of simulated maps with transverse
RM gradients for various intrinsic jet widths

With realistic
noise and
baseline
coverage,
simulated RM
gradients clearly
visible even
when jet width
<< beam width!




1.36, 1.43, 1.49, 1.67 GHz
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MC Results for Model Jet with 15% Polarized Flux and RM Range -30 to 30 rad m?

==l 98% or more of simulated
Sremm— maps showed transverse

RM gradients > 3{¥j when

intrinsic jet width was at
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Summary - Core shifts, core B fields

 Variety of image—alignment techniques have been
developed and are being actively used

 Core shift/core B-field studies carried out for large
numbers of frequencies and large source samples for the
first time

e Most results consistent with equipartition in core region
e 15-GHz core B fields range from ~0.02 G- 0.8 G

e Data consistent with B ~ r !

e Core B fields somewhat lower in BL Lac objects
than 1n quasars



Summary — Faraday Rotation

e Core RMs > Jet RMs (high electron density and B fields)

e Core RMs lower in BL Lacs than in quasars

e Transverse RM gradients (and transverse pol
structure, EVPA rotations) provide direct evidence for
helical/toroidal jet B fields, naturally formed by
rotation of central BH + jet outflow.

— Jets are fundamentally EM structures, launching
mechanism also probably EM

— Jets carry current — implications for collimation

e Evidence for return field in region surrounding the jet



e “3 beam width” criterion of Taylor & Zavala (2010) for
reliability of transverse RM gradients 1s too severe

e Best criteria for reliability are RM difference ( > 3{¥])
and monotonicity

» Transverse RM gradients in simulated images can be
visible even when 1ntrinsic jet width 1s << beam width

e Note: need less resolution to detect of
gradients than to reliably derive !

e Usual practice of assigning I, Q or U errors to be

equal to [¥]__ . appreciably underestimates uncertainties
(by about a factor of 2 off peak) (Hovatta et al. 2012)




Key future “technical” work:

o Improve understanding of uncertainties in fluxes
measured in individual pixels

o Mathematical description of correlations
between fluxes measured 1in nearby pixels

o Development of alternative imaging techniques
for VLBI (e.g. MEM, RM synthesis)



A cat who 1s has found something far more interesting
than multi-frequency polarization measurements.
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